PhysAugNet 1.0.1
VQ-VQE powered augmentation for metal defect segmentation
Loading...
Searching...
No Matches
io.py
Go to the documentation of this file.
1import os
2from PIL import Image
3from torchvision import transforms
4from torchvision.utils import save_image
5
6def load_image_folder(folder, image_size=(128, 128)):
7 transform = transforms.Compose([transforms.Resize(image_size), transforms.ToTensor()])
8 images, names = [], []
9 for fname in os.listdir(folder):
10 if fname.lower().endswith(('jpg', 'png', 'jpeg')):
11 img = Image.open(f"{folder}/{fname}").convert('RGB')
12 images.append(transform(img))
13 names.append(fname)
14 return images, names
15
16def save_image(tensor, path):
17 save_image(tensor.clamp(0, 1), path)
save_image(tensor, path)
Definition io.py:16
load_image_folder(folder, image_size=(128, 128))
Definition io.py:6